If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+100X-720000=0
a = 1; b = 100; c = -720000;
Δ = b2-4ac
Δ = 1002-4·1·(-720000)
Δ = 2890000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2890000}=1700$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-1700}{2*1}=\frac{-1800}{2} =-900 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+1700}{2*1}=\frac{1600}{2} =800 $
| -5+ | | -3y+3+8y-24=6y+7-5y | | 1/x2=16 | | 3x/10=x-1/2 | | y+5/18=4/21 | | 0.7x+2=0.2x-2 | | 9x-5=-x+1 | | (8x+4)=180 | | a-9/11=-1/11 | | (6x-1)+(5x+14)+57=180 | | −10−x4=−9-10-x4=-9 | | −426=21n | | 30=7x—5 | | 20=7h | | 1/2(-4x)+2x=13 | | 21=6d | | 8/5x-14=1/2(3x-8) | | 2/2=x/40 | | 1+4x+2x=-65 | | Y=0.15x-0.075x | | a+15/7a=-16/7+2a | | (90-6x)+(100-8x)=180 | | 3d-17=4 | | p=(1+0.005)12*6 | | 4x-(7-2x)=17 | | 4=-16t^2+24t+3 | | 5(y-76)=90 | | 5(y−76)=90 | | -3(n+-18)=96 | | 9(v-81)=90 | | 19x=-5x-6(-3x+15)+5 | | 9(v−81)=90 |